
AN INTRAMOLECULAR CHLOROALKYLATION REACTION by M. P. Stevens and F. Rasmara Chemistry Department American University of Beirut Beirut, Lebanon

(Received in UK 13 March 1970; accepted for publication 9 April 1970)

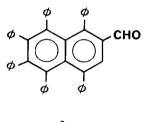
Treatment of an acetic acid suspension of 1,4,5,6,7,8-hexaphenyl-1,4-oxido-1,2,3,4-tetrahydro-2-naphthaldehyde (<u>la</u>, the Diels-Alder adduct of hexaphenylisobensofuran¹ with acrolein) with gaseous hydrogen chloride at ambient temperature yields moderately soluble 2-phenyl-3,4-(tetraphenylbenso)-9-chlorofluorene (2, melting point 193° dec.)² in about 50% yield.

lc: X = CN

2

The structure of 2 was established from the following evidence:

a) Elemental analysis (recrystallised from benzene-ethanol). Found: C, 89.40; H, 5.09; Cl, 5.65. Calculated for C47H31Cl: C, 89.43; H, 4.95; Cl, 5.62.


b) Lability of chlorine (positive reaction with silver nitrate).

c) NMR spectrum³ (carbon disulfide solution): singlet at 5.835 and complex multiplet at

d) U.V. spectrum: λ_{\max} (ethanol): 243, 277, 370 m μ . (Low solubility in ethanol precluded an accurate determination of the extinction coefficients, but log \in 's were estimated to be between 4 and 5).

The infrared spectrum was inconclusive due to the complexity in the 600 - 800 cm⁻¹ region, although <u>2</u> exhibited a strong band at 742 cm⁻¹ (o-disubstituted benzene ?) absent in the spectrum of la.

Analogous reactions have been reported for the Diels-Alder adducts of acrolein with 1,3diphenylisobenzofuran⁴ and 1,3,4,7-tetraphenylisobenzofuran⁵ although in neither instance was the structure of the chlorinated product established. In the latter case, 2-chloro-1,4,5,8tetraphenylnaphthalene was suggested⁵ as a possible structure on the basis of satisfactory elemental analysis and UV spectrum identical to that of 1,4,5,8-tetraphenylnaphthalene; however, both analysis and spectrum are also consistent with the fluorene derivative. In both of these cases^{4,5}, the corresponding phenylated 2-naphthaldehydes were also isolated, but we have been unable, thus far, to prepare the analogous 1,4,5,6,7,8-hexaphenyl-2-naphthaldehyde (<u>3</u>).

3

Preparation of the fluorene derivative, $\underline{2}$, is an example of an extremely facile intramolecular haloalkylation reaction⁶. The fact that previous workers^{4,5} were able to isolate the phenyl-substituted 2-naphthaldehydes as well as the chloroalkylated compounds indicates that aromatization precedes ring closure. Our failure to isolate the aromatized aldehyde, $\underline{3}$, could be the result of extra crowding caused by the phenyls at positions 6 and 7 pushing the phenyl group at position 1 into closer proximity with the aldehyde group.

Attempts to make the hexaphenylisobenzofuran - methyl vinyl ketone adduct (lb) undergo

a similar chloroalkylation reaction failed, as did attempts to make the acrylonitrile adduct (\underline{lc}) undergo an intramolecular Hoesch acylation reaction⁷ (using hydrogen chloride with or without added zinc chloride) to form the fluorenone derivative. In fact, both <u>lb</u> and <u>lc</u> failed even to aromatize under these conditions^{8,9}.

Acknowledgement. The authors are indebted to the Research Committee of the School of Arts and Sciences, American University of Beirut, for financial support including a graduate research assistantship to one of us (F. R.).

References and Footnotes

- 1. W. Ried and K.H. Bonnighausen, Ann., 639, 61 (1960).
- 2. Compound 2 appears to decompose with evolution of HC1. This possible thermal α -elimination reaction is under investigation.
- 3. The benaylic proton of diphenylmethyl chloride absorbs at 6.12 f in deuterochloroform. (N.S. Bhacca, L.F. Johnson, and J.N. Schoolery, High Resolution NMR Spectra Catalog, Vol. 1, Varian Associates, 1962, Spectrum No. 176).
- 4. A. Etienne, A. Spire, and E. Toromanoff, Bull. Soc. Chim. France, 750 (1952).
- 5. E.D. Bergmann, Sh. Blumberg, P. Bracha, and Sh. Epstein, Tetrahedron, 20, 195 (1964).
- 6. Haloalkylations are usually run in the presence of Friedel-Crafts catalysts, particularly zinc chloride. See, for example, R.C. Fuson and C.H. McKeever, Organic Reactions, 1, 63 (1942); G.A. Olah and W.S. Tolgyesi in G.A. Olah, "Friedel-Crafts and Related Reactions", Interscience, New York, 1963-4, Vol. 2, pp. 659-784.
- 7. P.E. Spoerri and A.S. DuBois, Organic Reactions, 5, 387 (1949).
- 8. Bergmann and coworkers (Ref. 5) were also unable to aromatize the methyl vinyl ketone and acrylonitrile Diels-Alder adducts of 1,3,4,7-tetraphenylisobenzofuran, but Etienne and coworkers (Ref. 4) did aromatize the methyl vinyl ketone-1,3-diphenylisobenzofuran adduct with gaseous hydrogen chloride; the aromatized methyl ketone did not, however, undergo chloro-alkylation.

- 9. The failure of <u>lc</u> to undergo the intramolecular acylation reaction is apparently not due to its inability to aromatize since 2,3,4,5-tetraphenylbenzonitrile¹⁰ was also found to be unreactive under conditions of the Hoesch reaction. Similar conclusions may be drawn about <u>lb</u> (see footnote 8).
- 10. R.F. Doering, R.S. Miner, Jr., L. Rothman, and K.I. Becker, J. Org. Chem., 23, 520 (1958).